positive charge, as was also found in the magnesium and nickel structures.

Although the atomic and group charges are similar for the structures, the topography of the difference density differs markedly from those for the transition metals. The topographies of the sections of the difference density near the Zn nucleus in the three maps shown in Fig. 1 are minor variations on the one theme. An elongated peak or ridge of density straddles the metal nucleus. A localized minimum 0.3 Å from the nucleus extends in a direction normal to the ridge, with positive density in approximately the same direction, reaching a maximum 0.6 Å from the nucleus. However, the relationships of these features to the Zn-O bonds is quite different, with the approximate symmetry axes for the feature aligned along the bonds in (a)and bisecting the O-Zn-O angle in (c). The orientation in (b) is intermediate between these two orientations, but closer to that in (a). In Figs. 1(b) and 1(c)containing O(9), the central ridge points towards a broad depleted region intersecting with, and reaching a minimum on, the Zn-O(9) vector. The density along M-O(9) is also depleted in the magnesium, nickel and copper complexes. However, this region is more extensive in the zinc structure.

For the transition-metal complexes there are minima, 0.3 Å from the metal nucleus and aligned closely with M-O(7) and M-O(8), which are attributed to the reduction of density in the e_g orbitals. Although there are minima at about 0.3 Å from the Zn nucleus, these do not minimize along the M-O bonds. There is strong concentration of density 0.6 Å from the metal nucleus, especially along the Zn-O(7) bond. The appearance of the map suggests that it is constructed from components with a radial structure such that the sign of the difference density changes between 0.3 and 0.6 Å from the metal.

The authors acknowledge the assistance of A. H. White with the X-ray measurements. Computer programs for the data reduction and structure analysis were from the *XTAL* system of Hall & Stewart (1987).

References

- CHATTERJEE, A., MASLEN, E. N. & WATSON, K. J. (1988). Acta Cryst. B44, 381-386, 386-395.
- HALL, S. R. & STEWART, J. M. (1987). XTAL2.2 User's Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- HIRSHFELD, F. L. (1977). Theor. Chim. Acta, 44, 129-138.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- MASLEN, E. N., RIDOUT, S. C. & WATSON, K. J. (1988). Acta Cryst. B44, 96-101.
- MASLEN, E. N., RIDOUT, S. C., WATSON, K. J. & MOORE, F. H. (1988a). Acta Cryst. C44, 409–412.
- MASLEN, E. N., RIDOUT, S. C., WATSON, K. J. & MOORE, F. H. (1988b). Acta Cryst. C44, 412–415.
- MASLEN, E. N., WATSON, K. J. & MOORE, F. H. (1988). Acta Cryst. B44, 102–107.
- MONTGOMERY, H. & LINGAFELTER, E. C. (1964). Acta Cryst. 17, 1295-1299.
- MONTGOMERY, H. & LINGAFELTER, E. C. (1966). Acta Cryst. 20, 659-662.
- OHBA, S., SHIOKAWA, K. & SAITO, Y. (1987). Acta Cryst. C43, 189-191.
- SAKABE, M., SASAKI, K. & SAKABE, K. (1984). Methods and Applications in Crystallographic Computing, edited by S. R. HALL & T. ASHIDA, pp. 273–285. Oxford: Clarendon Press.

Acta Cryst. (1988). C44, 1514-1516

Structure du Tétraméthyl-3,3',4,4' Tétrathia-2,2',5,5' Fulvalénium Tétracyanonickelate(II): (TMTTF),[Ni(CN)₄]

PAR MUSTAPHA BENCHARIF ET LAHCÈNE OUAHAB*

Laboratoire des Matériaux Moléculaires et de Cristallochimie, Institut de Chimie, Université de Constantine, Algérie

(Reçu le 6 juillet 1987, accepté le 5 avril 1988)

Abstract. $[C_{10}H_{12}S_4]_2[Ni(CN)_4]$, $M_r = 683.71$, triclinic, $P\overline{1}$, a = 8.186 (4), b = 8.574 (4), c = 10.361 (6) Å, $\alpha = 92.54$ (6), $\beta = 97.47$ (6), $\gamma = 98.14$ (7)°, V = 712.3 Å³, Z = 1, $D_x = 1.594$ g cm⁻³, λ (Mo Ka) = 0.71073 Å, $\mu = 12.70$ cm⁻¹, F(000) =

352, T = 293 K, R = 0.038 for 1705 observed reflections. The TMTTF molecules are dimerized and form with the Ni(CN)₄ a distorted cubic coordination typical of the CsCl structure type. The Ni(CN)₄ anions form a dihedral angle of $102 \cdot 1^{\circ}$ with the TMTTF. The 2:1 stoichiometry suggests fully oxidized organic molecules in agreement with the insulating character of this material.

* Auteur auquel correspondance devra être adressée.

0108-2701/88/091514-03\$03.00

© 1988 International Union of Crystallography

Ni S I

S2

S3 S4

NI

N2 C1 C2 C3

C4 C5

C6 C7

C8 C9

C10

C21

C22

Introduction. Dans le cadre de la poursuite de nos recherches dans le domaine des matériaux organominéraux (Ouahab, 1985; Ouahab, Batail, Perrin & Garrigou-Lagrange, 1987), nous avons dans ce travail cherché à diversifier la nature de l'espèce anionique en nous intéressant plus particulièrement aux tétracyanométallates $[M(CN)_4, M = Ni, Pt, Pd]$. Ces anions sont plans et possèdent deux charges négatives. Nous présentons dans ce qui suit la structure moléculaire et cristalline du sel isolant $(TMTTF)_2[Ni(CN)_4]$ obtenu par électrocristallisation.

Partie expérimentale. Les cristaux de ce matériau ont été obtenus par oxydation anodique, sur électrode de platine, sous un courant de 1,5 µA à l'aide d'une solution saturée de K₂[Ni(CN)₄] (80% acétonitrile et 20% eau) en présence de TMTTF ($10^{-3} M$). Ces cristaux se présentent sous forme de plaquettes noires. Les paramètres de la maille ont été affinés par moindres carrés à partir de 25 réflexions ($6 < \theta < 14^{\circ}$) optimisées. Enregistrement des intensités diffractées sur diffractomètre automatique (Nonius CAD-4); monochromateur: lame de graphite; balayage ω -2 θ ; domaine *hkl*: $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 13$; $\theta \le 25^{\circ}$; trois réflexions de contrôle, pas de variation d'intensité; 2505 réflexions mesurées, 1705 observées $[I \ge 3\sigma(I)]$, correction de Lorentz-polarisation mais pas de correction d'absorption; dimensions du cristal: $0.15 \times 0.12 \times 0.06$ mm. Structure résolue à l'aide des méthodes directes (MULTAN80, Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980) et de synthèses de Fourier différence successives. Affinement de la structure par une méthode de moindres carrés (matrice complète) minimisant la fonction de $\sum w(|F_o| - |F_c|)^2; \quad w = 1/[\sigma(|F_o|)^2 + (0.04|F_o|)^2],$ $S = 1.63; \quad (\Delta/\sigma)_{\text{max}} = 0.02; \quad \Delta\rho_{\text{max}} = 0.39 \text{ e} \text{ Å}^{-3}; \quad R = 0.39 \text{ e} \text{ Å}^{-3};$ 0,038, wR = 0,048; facteurs de diffusion des International Tables for X-ray Crystallography (1974). Programmes de calcul de la chaîne SDP (Frenz, 1978).

Discussion. Le Tableau 1 rassemble les valeurs finales des positions atomiques avec leurs écarts types ainsi que les facteurs d'agitation thermique isotropes équivalents.* Les valeurs des angles et des longeurs de liaisons sont données dans la Fig. 1. Ces valeurs sont en accord avec celles observées pour l'anion $[Ni(CN)_4]^{2-}$ dans son sel de bis(*N*-méthyl-pyridinium-4)-1,2 éthylène (Leipoldt, Basson & Bok, 1970). Dans la molécule organique la longueur de la liaison C1-C4 [1,390 (5) Å]

Tableau 1. Coordonnées atomiques $(\times 10^4)$ et facteurs d'agitation thermiques équivalents

Les écarts types sont donnés entre parenthèses.

В	$a_{\rm eq} = \frac{4}{3} \sum_l \sum_j \beta_{lj} a_l^2$	$a_{i}^{*}a_{i}^{*}a_{i}^{*}$.	
x	у	Z	B_{eq} (Å ²)
0	Ó	0	2,69 (2)
2073 (1)	3755 (1)	3821 (1)	2,54 (2)
2708 (1)	6477 (1)	5669 (1)	2,56 (2)
4857 (1)	4573 (1)	7701 (1)	2,54 (2)
4085 (1)	1790 (1)	5944 (1)	2,73 (2)
2472 (6)	2981 (5)	283 (5)	4,6 (1)
1273 (6)	-953 (5)	-2474 (4)	4,5 (1)
3023 (5)	4573 (5)	5316 (4)	2,14 (8)
1421 (5)	6646 (5)	4221 (4)	2,54 (9)
1117 (5)	5376 (5)	3366 (4)	2,69 (9)
3882 (5)	3729 (5)	6223 (4)	2,18 (8)
5552 (5)	2882 (5)	8269 (4)	2,55 (9)
5198 (5)	1579 (5)	7450 (4)	2,61 (9)
802 (6)	8187 (6)	4053 (5)	3,7 (1)
56 (6)	5212 (6)	2063 (5)	3,5 (1)
6463 (6)	2980 (6)	9629 (5)	3,5 (1)
5600 (7)	-28 (6)	-7738 (5)	3,8 (1)
1523 (6)	1847 (5)	180 (5)	3,2 (1)
773 (6)	-605 (5)	-1541(5)	3,3 (1)

Fig. 1. Longueurs (Å) et angles (°) de liaisons (a) TMTTF, (b) $Ni(CN)_4$.

ainsi que les longueurs des liaisons C1-S(1,2) et C4-S(3,4) [distance moyenne 1,713 (3) Å] sont comparables à celles observées dans d'autres matériaux contenant des molécules organiques totalement oxydées (Teitelbaum, Marks & Johnson, 1980). Les molécules organiques forment des dimères totalement oxydés [les distances S…S interdimères sont de 3,995 (1) Å]. Ces

^{*}Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées atomiques des atomes d'hydrogène et des plans moyens ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 44926: 16 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 2. Vue en perspective du contenu de la maille.

dimères sont en coordinence cubique déformée, par rapport aux anions $[Ni(CN)_4]^{2-}$, typique de la structure CsCl (Ouahab *et al.*, 1987). Les molécules de TMTTF présentent un recouvrement éclipsé (Fig. 2). Cette configuration maximise les interactions soufresoufre (Lowe, 1980). Ainsi, les molécules ne sont pas planes et il en résulte des distances S...S intradimères de 3,327 (1) Å courtes par rapport à la séparation de van der Waals (3,70 Å). Nous remercions Professeur Daniel Grandjean, Laboratoire de Cristallochimie, Université de Rennes I, 35042 Rennes, France, pour avoir mis à notre disposition le diffractomètre automatique.

Références

- FRENZ, B. A. (1978). The Enraf-Nonius CAD-4 Structure Determination Package – A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Determination. Dans Computing in Crystallography, edité par H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI, pp. 64-71. Delft Univ. Press.
- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press. (Distributeur actuel Kluwer Academic Publishers, Dordrecht.)
- LEIPOLDT, J. C., BASSON, S. S. & BOK, L. D. C. (1970). Acta Cryst. B26, 361-367.
- Lowe, J. P. (1980). J. Am. Chem. Soc. 102, 1262-1269.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. de York, Angleterre, et Louvain, Belgique.
- OUAHAB, L. (1985). Thèse de Doctorat d'Etat, Rennes, France.
- OUAHAB, L., BATAIL, P., PERRIN, C. & GARRIGOU-LAGRANGE, C. (1987). Mater. Res. Bull. 21, 1223–1230.
- TEITELBAUM, R. C., MARKS, T. J. & JOHNSON, C. K. (1980). J. Am. Chem. Soc. 102, 2986–2989.

Acta Cryst. (1988). C44, 1516–1518

The Structure of MoO₂DPO₄.D₂O by Powder Neutron Diffraction

By M. T. Weller and R. G. Bell

Department of Chemistry, The University, Southampton SO9 5NH, England

(Received 1 March 1988; accepted 10 May 1988)

Abstract. MoO₂DPO₄.D₂O, $M_r = 244.9$, monoclinic, $P2_1/m$, a = 6.7104 (2), b = 6.3437 (2), c = 6.9864 (2) Å, $\beta = 109.892$ (1)°, V = 279.7 (1) Å³, Z = 2, $D_x = 2.90$ g cm⁻³, $\lambda = 1.595$ Å, $\mu = 0.010$ cm⁻¹, T = 5 K. The D-atom positions in MoO₂DPO₄.D₂O have been determined by powder neutron diffraction using the Rietveld profile refinement method. The structure of this material, formerly represented as Mo(OH)₃PO₄, was found to consist of bent MoO₂ groups coordinated by D₂O and linked into double chains by PO₃OD units. These double chains are held together by hydrogen bonds.

Introduction. A material of the composition $2MoO_3$ - $P_2O_5.3H_2O$ was first reported by Schultz (1955). Kierkegaard (1958) subsequently studied the structure of this material by single-crystal X-ray diffraction and

found it to consist of double chains of linked MoO_6 octahedra and PO_4 tetrahedra parallel to the crystal y axis. The refinement was unable to locate the H atoms and indeed considerable uncertainty remained in a number of the O-atom positions. Kierkegaard interpreted the results of this refinement as demonstrating the presence of $MoO_3(OH)_3$ octahedra, with a fairly regular octahedral coordination for molybdenum, linked by $O-PO_2-O$ units, and hence described the material as $Mo(OH)_3PO_4$.

However, the infra-red spectrum of this material shows a very strong absorption at 1620 cm^{-1} (Kierkegaard, 1962), indicative of water molecules in the structure. This prompted us to examine the structure of 'Mo(OH)₃PO₄' by neutron diffraction in order to determine accurate oxygen positions and locate the H atoms.

0108-2701/88/091516-03\$03.00

© 1988 International Union of Crystallography